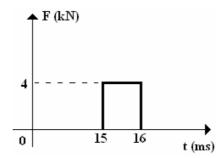

PROVA DE FÍSICA I


Esta prova tem por finalidade verificar seus conhecimentos das leis que regem a natureza. Interprete as questões do modo mais simples e usual. Não considere complicações adicionais como fatores não enunciados. Em caso de respostas numéricas, admita exatidão com um desvio inferior a 5 %. A aceleração da gravidade será considerada como $g = 10 \text{ m/s}^2$.

- 01. Dois cilindros feitos de materiais A e B têm os mesmos comprimentos; os respectivos diâmetros estão relacionados por d_A = 2 d_B . Quando se mantém a mesma diferença de temperatura entre suas extremidades, eles conduzem calor à mesma taxa. As condutividades térmicas dos materiais estão relacionadas por:
- $A) k_A = k_B / 4$
- B) $k_A = k_B / 2$
- C) $k_A = k_B$
- D) $k_A = 2 k_B$
- E) $k_A = 4 k_B$
- 02. O diagrama PV para uma determinada amostra de gás está representado na figura a seguir. Se o sistema é levado do estado a para o estado b, ao longo do percurso acb, fornece-se a ele uma quantidade de calor igual a 100 cal, e ele realiza um trabalho de 40 cal. Se, por meio do percurso adb, o calor fornecido é de 72 cal, então o trabalho realizado vale em cal:

- A) 28
- B) 60
- C) 12
- D) 40 E) 24
- 03. Considere a massa do Sol $M_S=2$. 10^{30} kg, a massa da Terra $M_T=6$. 10^{24} kg, a distância Terra-Sol (centro a centro) aproximadamente $d_{TS}=1$. 10^{11} m e a constante de gravitação universal G=6,7. 10^{-11} Nm 2 kg $^{-2}$. A ordem de grandeza da força de atração gravitacional entre o Sol e a Terra vale em N:
- A) 10^{23}
- B) 10^{32}
- C) 10^{54}
- $D) 10^{18}$
- E) 10^{21}

04. Uma pedra de 2,0 kg está deslizando a 5 m/s da esquerda para a direita sobre uma superfície horizontal sem atrito, quando é repentinamente atingida por um objeto que exerce uma grande força horizontal sobre ela, na mesma direção e sentido da velocidade, por um curto intervalo de tempo. O gráfico abaixo representa o módulo dessa força em função do tempo.

Imediatamente após a força cessar, o módulo da velocidade da pedra vale em m/s:

- A) 4
- B) 5
- C) 7
- D) 9
- E) 3

05. Um naturalista, na selva tropical, deseja capturar um macaco de uma espécie em extinção, dispondo de uma arma carregada com um dardo tranquilizante. No momento em que ambos estão a 45 m acima do solo, cada um em uma árvore, o naturalista dispara o dardo. O macaco, astuto, na tentativa de escapar do tiro se solta da árvore. Se a distância entre as árvores é de 60m, a velocidade mínima do dardo, para que o macaco seja atingido no instante em que chega ao solo, vale em m/s:

Adote $g = 10 \text{ m/s}^2$.

- A) 45
- B) 60
- C) 10

- D) 20 E) 30

06. Um coelho está cochilando em um carrossel parado, a uma distância de 5 m do centro. O carrossel é ligado repentinamente e logo atinge a velocidade normal de funcionamento na qual completa uma volta a cada 6s. Nessas condições, o coeficiente de atrito estático mínimo entre o coelho e o carrossel, para que o coelho permaneça no mesmo lugar sem escorregar, vale:

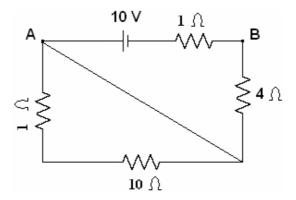
Considere
$$\pi = 3$$
 e g = 10 m/s².

- A) 0.2
- B) 0.5
- C) 0,4

- D) 0.6
- E) 0.7

07. Um próton se desloca horizontalmente, da esquerda para a direita, a uma velocidade de 4 . 10⁵ m/s. O módulo do campo elétrico mais fraco capaz de trazer o próton uniformemente para o repouso, após percorrer uma distância de 3 cm, vale em N/C:

Dados: massa do próton = $1.8 \cdot 10^{-27}$ kg, carga do próton = $1.6 \cdot 10^{-19}$ C


- A) 4.10^3
- B) 3.10^5

D) 3.10^4

C) 6.10^4

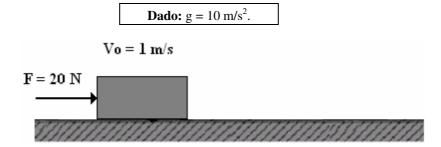
E) 7.10^3

08. No circuito elétrico a seguir, considere o gerador com ϵ = 10 V e r = 1 Ω .

Analise as afirmativas abaixo.

- (1) A corrente elétrica no circuito vale 2 A.
- (3) A potência dissipada pelo resistor de 10Ω é de 10 W.
- (5) O rendimento do gerador é de 80 %.
- (7) A diferença de potencial entre os pontos A e B vale 8V.

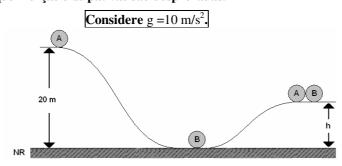
A soma dos números entre parênteses que corresponde às proposições CORRETAS é igual a


- A) 16
- B) 15
- C) 1
- D) 8
- E) 13
- 09. Uma corrente de 0,3 A que atravessa o peito pode produzir fibrilação (contrações excessivamente rápidas das fibrilas musculares) no coração de um ser humano, perturbando o ritmo dos batimentos cardíacos com efeitos possivelmente fatais. Considerando que a corrente dure 2,0 min, o número de elétrons que atravessam o peito do ser humano vale:

Dado: carga do elétron = $1,6x10^{-19}$ C.

- A) $5,35 \cdot 10^2$
- B) 1,62 . 10⁻¹⁹
- C) $4,12 \cdot 10^{18}$
- D) 2,45 . 10¹⁸
- E) $2,25 \cdot 10^{20}$
- 10. Um pulso ondulatório senoidal é produzido em uma extremidade de uma corda longa e se propaga por toda a sua extensão. A onda possui uma frequência de 50 Hz e comprimento de onda 0,5 m. O tempo que a onda leva para percorrer uma distância de 10m na corda vale em segundos:
- A) 0.2
- B) 0,4
- C) 0.6
- D) 0,7
- E) 0,9

Nas questões de 11 a 14, assinale, na coluna I, as afirmativas verdadeiras e, na coluna II, as falsas.


11. De acordo com a figura a seguir, uma força de intensidade 20 N é aplicada sobre um bloco de massa 4 kg. O coeficiente de atrito entre o bloco e a superfície é μ_c = 0,3, e a velocidade inicial do bloco é de 1 m/s.

Pode-se afirmar que

I	II	
0	0	a força resultante que atua no bloco é de 16 N.
1	1	a intensidade da força de atrito é de 12 N.
2	2	a aceleração do bloco é de 2 m/s ² .
3	3	após percorrer 12m, a velocidade do bloco é de 7 m/s.
4	4	após percorrer 12m, sendo retirada a força de 20 N, o bloco percorrerá 10m, até parar.

12. Na figura a seguir, o corpo A de massa igual a 1 kg é solto de uma altura igual a 20 m. Após descer, chocase com o corpo B de massa 1 kg, inicialmente em repouso. Esse choque é inelástico, e o conjunto desloca-se até a altura h. Quaisquer forças dissipativas são desprezadas.

Pode-se afirmar que

I	II	
0	0	a velocidade do corpo A, ao chegar ao NR (nível de referência) e antes de se chocar com
		o corpo B, vale 20 m/s.

	II	
1	1	imediatamente após o choque, a energia cinética dos corpos é de 100 J.
2	2	a altura máxima que os corpos atingem é de 7m.
3	3	a energia potencial que os blocos atingem ao parar é de 100 J.
4	4	a quantidade de movimento após o choque foi reduzida à metade daquela antes do choque.
		ar pesa 80 N e na água pesa 60 N. Despreze o empuxo do ar e considere a densidade da ág 1 ³ e a aceleração da gravidade local igual a 10 m/s². Pode-se afirmar que
0	0	a massa do bloco vale 8kg.
1	1	quando o bloco está submerso, o empuxo sofrido por este é de 60 N.
2	2	o volume do bloco é de 2 . 10^{-3} m ³ .
		a densidade do bloco é de 4,0 . 10 ³ kg/m ³ .
;	3	
	4	o peso aparente do bloco é de 60 N.
	4 intepar	o peso aparente do bloco é de 60 N.
t m a	4 intepar em do d	o peso aparente do bloco é de 60 N. o é colocado a 90 cm de um objeto, e uma lente situada entre eles projeta, no anteparo
m a	4 antepar em do c	o peso aparente do bloco é de 60 N. o é colocado a 90 cm de um objeto, e uma lente situada entre eles projeta, no anteparo bjeto diminuída 2 vezes. Pode-se afirmar que
m a	4 anteparem do o	o peso aparente do bloco é de 60 N. o é colocado a 90 cm de um objeto, e uma lente situada entre eles projeta, no anteparo bjeto diminuída 2 vezes. Pode-se afirmar que o objeto está posicionado a 60 cm do centro óptico.
m a	4 anteparem do o	o peso aparente do bloco é de 60 N. o é colocado a 90 cm de um objeto, e uma lente situada entre eles projeta, no anteparo bjeto diminuída 2 vezes. Pode-se afirmar que o objeto está posicionado a 60 cm do centro óptico. a distância focal da lente é de 20 cm.